Laser cutting in comparison with other technologies

A comparison between laser cutting, plasma cutting and autogenic flame cutting

Different cutting procedures are available to manufacturing companies for cutting metallic materials. The three most common procedures are highlighted on this page: the laser as a tool stands out in direct comparison with plasma cutting and autogenic flame cutting, thanks to its high degree of precision and its working speed – even for non-metallic materials.

  Icon
Laser cutting
Icon
Plasma cutting
 
Icon
Autogenic flame cutting
Conventional area of application
  • Metallic materials (mild steel, stainless steel, aluminum, copper, brass, foiled sheets, galvanized sheets)
  • Non-meta... Mehr lesen

  • Metallic materials (steel, stainless steel, aluminum, copper and brass, various conductive metals)

  • Metallic materials (mild steel and low-alloy steels, but not aluminum or stainless steel). Only metals whose oxides... Mehr lesen

Sheet thickness range From 0.5 mm to over 30 mm Hand-operated up to 38 mm; computer-controlled up to 150 mm**with extremely high energy input

From 1 mm to 1,000 mm

Quality Low edge roughness and burr formation; very little spatter residue; hardly any post-processing required, depending ... Mehr lesen A great deal of spatter residue; very wide joins; a great deal of post-processing (for example, deburring) required A great deal of spatter residue; very wide joins; a great deal of post-processing required
Productivity High working speeds with a low-maintenance system; fluid process sequence Very dependent on contour and requirements; process reliability is not always ensured - for example, the hole diame... Mehr lesen Low productivity as it is usually a hand-operated process which consequently takes longer; metal must first be heated up
Precision Extremely fine light beam; the most delicate of contours are possible Relatively thick beam; delicate contours are not possible High heat input, therefore less precision possible
Speed Very fast (several meters per second) Fast for bevel cuts in thick sheet metal Slow (for example, up to 750 mm/min for a 10 mm thick sheet, as the metal must be preheated)
Contour flexibility Very high. Small kerf of < 0.5 mm with accurate angles and very small holes Low. Large kerf of 1 mm to 4 mm, no inner contours with sharp angles, imprecise and "rounded" corners, smallest hol... Mehr lesen Low. No small holes or detailed shapes; large, rough shapes are more likely. Permits steep angles of up to 70° (com... Mehr lesen
Sustainability of the technology Very high. Laser cutting is an innovative technology which is constantly being developed further. Each laser can be... Mehr lesen High. CNC plasma cutting systems can be used in a variety of ways. It is possible to cut two- and three-dimensional... Mehr lesen Low. The technology can no longer be adapted for new cutting requirements. One reason is because only a few variabl... Mehr lesen

You may also find these topics interesting

Image of the technology inside the 2D laser cutting machines
Laser cutting machines

Regardless of whether you need a CO2 or solid-state laser, we can offer the perfect 2D laser cutting machine to meet any requirement and can provide the ideal solution for any sheet metal type.

3D laser cutting machines from TRUMPF
3D laser cutting

Regardless of whether you need to cut 3D components, profiles, or tubes – as a pioneer in 3D laser processing, TRUMPF can provide the perfect 3D laser cutting machine for your application.

Laser tube cutting machines

More and more designers are taking advantage of the new creative freedom provided by laser tube cutting using TruLaser Tube machines from TRUMPF.

Service & contact
Contact