Country/region and language selection
Architekturglas
Architekturglas

Passive sputtering (PVD method)

Atomise to recreate

PVD technology (Physical Vapour Deposition) is used to apply thin films measuring just micrometres to materials of various qualities. To do so, a block of material, consisting of the film material to be applied, is evaporated in a vacuum. This creates a gas mixture of atomic particles, which precipitate onto the substrate. In plasma-assisted PVD processes, a cathode is evaporated by being bombarded with ions. This sputter or evaporation process can take place at room temperature. It is divided into three stages: Sputtering, diffusion, and film growth.

Plasmabeschichtung

Sputtern

Sputtern - besonders das Magnetronsputtern - ist die mengenmäßig bedeutendste Methode der industriellen Plasmabeschichtung. Die Sputtertechnik beruht auf dem Phänomen der Kathodenzerstäubung, einem grundlegenden Phänomen in elektrisch angeregten Plasmen: Der positive Ionenstrom im Plasma trifft auf die Kathode und schlägt dort Material heraus.

Üblicherweise wird als Kathode ein Magnetron verwendet welches das Plasma vor der Kathode konzentriert und damit die höchsten Sputterraten bzw. Beschichtungsraten auf dem Substrat ermöglicht.

Da das Substrat auch einem gewissen energetischen Einfluss der Ionen ausgesetzt ist, können durch Magnetronsputtern im Gegensatz zur thermischen Verdampfung sehr dichte und feinkörnige Schichten erreicht werden.

Zum Sputtern werden in der Regel leitfähige Targets (Materialvorrat auf der Kathode) verwendet. Damit eignen sich besonders Metalle und leitfähige Keramiken. Diese können in einem Edelgas gesputtert werden, so dass die Zusammensetzung der Schicht dem Target entspricht. Beim Reaktivsputtern werden durch Zusatz von Sauerstoff oder Stickstoff als Reaktivgas auch isolierende Oxide oder Nitride beschichtet. Diese haben zahlreiche Anwendungen als dielektrische transparente Schutzschichten.

Zum Sputtern von einem einzelnen Target werden Gleichstrom-Generatoren eingesetzt, die, je nach Prozess auch gepulst betrieben werden. Zum Sputtern isolierender Schichten wird in der Regel das Dual-Magnetronsputtern eingesetzt, bei dem mit einer Wechselstromversorgung zwei Magentrons im Wechsel gegeneinander betrieben werden, so dass sich keine isolierende Schicht auf der Anode ablagert. Spezielle Generatoren hierfür sind MF-Generatoren oder Bipolargeneratoren.

Bei Sputter-Pllasmen kommt es häufig vor, dass in der Glimmentladung ein lokaler Lichtbogen, auch Arc genannt, zündet.  Generatoren für Sputterprozesse müssen mit einer geeigneten Vorrichtung zum Arc Management ausgestattet sein.

High power impulse sputtering (HiPIMS)

Das Hochleistungs-Impulssputtern, bekannt als HiPIMS (High impulse magnetron sputtering) gewinnt bei der Herstellung von Hartstoff- und Verschleißschutzschichten zunehmend Interesse, denn die Anforderungen an die Schichtqualität sind besonders hoch. Hierfür werden spezielle Puls-Stromversorgungen benötigt, die ihre Leistung in sehr kurzen und energiereichen Pulsen mit einer typischen Dauer unter 100µs und einer Wiederholrate im 100 Hz-Bereich abgeben.

Die HiPIMS-Generatoren müssen außer dem Pulsbetrieb auch die Anforderung an alle Plasma-Stromversorgungen erfüllen: Prozessangepasste präzise Regelung des Ausgangs und ein schnelles Arc-Management.

Plasma Enhanced Chemical Vapor Deposition

Die Chemical Vapor Deposition, auch CVD-Technologie genannt, bringt dünnste Schichten auf Materialien unterschiedlichster Qualitäten auf. Dabei wird aus gasförmigen Stoffen auf thermischem Weg ein festes Beschichtungsmaterial erzeugt, welches sich auf dem Substrat als kristalline oder amorphe Schicht absetzt.

In der herkömmlichen thermischen Beschichtung spaltet sich das Prozessgas erst an der erhitzten Substratoberfläche in seine Reaktionsprodukte auf. Bei der plasmaunterstützten Gasphasenabscheidung (PECVD - Plasma Enhanced Chemical Vapor Deposition) findet diese Reaktion schon durch elektrische Ionisation in der Gasphase statt.

Die wesentlich niedrigeren Temperaturen sind ein großer Vorteil von PECVD, denn nur damit können temperaturempfindliche Substratwerkstoffe wie Kunststoff eingesetzt werden.

PECVD ist damit ein vielseitiges Verfahren in der Fertigung mikroelektronischer Bauelemente, Flachbildschirmen, Solarmodulen und optischer Komponenten. Es können metallene, halbleitende, oder isolierende Schichten aufgetragen werden. Auch komplexe Schichtsysteme sind realisierbar.

White paper

We have compiled a selection of white papers on topics that may be of interest to you

PDF - 715 KB
It depends on the form: bipolar sputtering
Two characteristics of bipolar power supplies are presented in this article: (i) a wide pulse frequency range of up to 100 kHz and (ii) an additional brake time between the positive and negative half-wave of the square wave shape of electricity and voltage.
PDF - 941 KB
Sine or square wave
Since the introduction of dual magnetron sputtering (DMS) for highly insulating layers, it is possible to choose between a square wave pulse and sine wave power supply.
PDF - 567 KB
Auto Frequency Tuning
A countermeasure against rapid fluctuations in the plasma’s impedance range is automatic frequency tuning, during which the RF generator sets its fundamental oscillation to a frequency value with better adaptation within a time frame of less than one millisecond.
PDF - 2 MB
New pulsed DC technology
Direct current and pulsed direct current sputtering are some of the most frequently used sputtering technologies in the industrial sector. The introduction of pulsed direct current technology facilitated the mass production of coatings made of non-conductive compounds created by reactive magnetron sputtering.
PDF - 1 MB
Voltage controlled transition mode
Reactive sputtering is a largely successful method used in modern industry to create insulating coatings and hard coatings. In comparison with evaporation, sputtering offers the benefits of ion-assisted coating which makes it attractive for the industry despite considerable system and electricity costs.
PDF - 2 MB
Arc management
The creation of arcs during MF magnetron sputtering: A well-known problem during reactive sputtering is arc formation at the cathodes.
PDF - 864 KB
LDMOS
This paper explores the effects of performance-combining structures on the RF and thermal performance of RF high power amplifiers under incongruent conditions. 
PDF - 425 KB
HiPIMS - new possibilities for the industry
High Power Impulse Magnetron Sputtering (HIPIMS) is the latest PVD process (Physical Vapor Deposition) available for the industry.
PDF - 1 MB
PEALD technology, radio frequency signal generator and matching networks
Atomic Layer Deposition (ALD) is a procedure during which a number of thin layer materials are deposited from a vapour phase. A very thin film is built up out of atomic layers in several coating cycles.
PDF - 3 MB
Application of pulsed DC sputtering
One of the most interesting resorption materials for solar cells are copper-indium-selenide (CIS) based materials whose properties can be changed by replacing part of the indium with gallium to make Cu(In,Ga)Se2, known as CIGS.
PDF - 2 MB
Precision in processing
Continuous improvements of semiconductor processes are required to ensure a continuous reduction in size. This in turn requires RF generators that have an even higher signal quality in relation to output power and time resolution.
Contact
TRUMPF Ltd.
Fax +44 1582 399260
Email
Service & contact